Time-resolved high-gain EPSRC Centre for Innovative Manufacturing in PRODUCTION PROCESSES short-pulse amplifier model with KE LEONARDD arbitrary pump and signal fields

Goals

- Design of a nanosecond multi-pass amplifier based on holmium
- Transient analysis capabilities for dynamic system modelling
- Enable design of highly stable system with active beam shaping and control

Michael E Reilly^{1,2}, Brian K Flemming² and M J Daniel Esser¹

¹School of Engineering and Physical Sciences, Heriot-Watt University, EH14 4AS ²Leonardo, Crewe Toll, 2 Crewe Road North, Edinburgh, EH5 2XS

Capability

Spatially-dependent gain in waveguide or slab

 $G(x)\Phi_{\rm s}(x)$

Cladding

Core

Signal

Signal

A selection of 3 geometries to be investigated:

Side-pumped Planar Waveguide Amplifier

Localised high

Assumptions:

- Pulse temporal overlap is ignored (incoherent pulse approximation^[1])
- Photon transit time short compared to pulse duration^[2]

Benefits:

Quantify the influence of:

Resonator

- Pump/gain profile on the amplified beam
- Impact of self-imaging such as in the planar waveguide
- Transient effects & pulse shape distortions
- Thermal profile (and its development over time)

Design methodology

If high gain saturation is achieved

Pros:

High gain & high confinement

- High efficiency, lower number of passes
- Poor beam quality of pump handled
- Beam quality maintained in signal

Cons:

Pump

Pump

- Power damage thresholds scale faster
- High cost of manufacture & delicate

Side-pumped Slab Amplifier

Pros:

- Thermal guiding adjustment possible
- Low cost & wide aperture alignment

Cons:

- High pass paths are very unstable
- In-plane thermal grad. \rightarrow path walk-off

End-pumped Double-pass Slab Amplifier

Pros:

Low cost & wide aperture/align easier ullet

throughout medium, thermal load will be heavily influenced by pump beam profile

Example: 20 passes in off-axis unstable resonator using **toroidal** mirrors (ROC – 500mm out of page direction)

Pulse temporal High overlap saturation saturation Output

Pros:

- High number of passes possible in one traverse
- Stable cavity in the out-ofslab plane direction helps maintain beam quality

Cons:

- Very sensitive to changes in input alignment with as little as 20-50µrad being the difference between 20 and 100 passes
- Freeform & toroidal optics may be used but they are more expensive

Cons:

- Pre-amplifier may be required
- Longer slabs require larger heat sinks

[1] M. Li et al., 'Analytical and numerical solutions to the amplifier with incoherent pulse temporal overlap', Opt. Commun., vol. 382, pp. 49–57, 2017.

[2] T. Taira, W. M. Tulloch, and R. L. Byer, 'Modeling of quasi-three-level lasers and operation of cw Yb: YAG lasers', *Appl. Opt.*, vol. 36, no. 9, pp. 1867–1874, 1997.

